"With this approach, we are well on our way to power levels exceeding 100 watts per meter," ...
Global Photonic Energy Corp. (GPEC), a developer of organic photovoltaic technology for high-power solar cells, announced that its research partners at Princeton University and the University of Southern California have achieved a record in an organic solar cell that is responsive to light in the near-infrared range of the solar spectrum.
"This latest device demonstrates that significant power can be harvested from the IR and near-IR portion of the solar spectrum," said Forrest. "In fact, this novel approach has the potential to double the power output of organic solar devices with power harvested from the near-IR and IR portion of the solar spectrum.
Recent efforts have focused on the use of "organic" materials. Organic semiconductors contain carbon and are capable of achieving ultralow-cost solar power generation that is competitive with traditional fossil-fuel sources. Organic materials have the potential to achieve ultralow cost production costs and high-power output, GMAC said. They can be applied to virtually any surface using a method akin to spray painting and can also be used in flexible applications.
GPEC sponsors research by Professor Stephen R. Forrest at Princeton and Professor Mark E. Thompson at the University of Southern California. They reported their results in a recent issue of Applied Physics Letters.