With few early symptoms, ovarian cancer--like many cancers--can be hard to detect without invasive and expensive procedures. "Early detection is absolutely not only key but probably the only way for us to win the war on cancer," says Vadim Backman who is a biomedical engineer at Northwestern University in Evanston, Ill.With support from the National Science Foundation (NSF), in part funded through the American Recovery and Reinvestment Act of 2009 (ARRA), Backman's research is shedding light on how early cancer detection can be made cheaper, more accurate and less invasive. "We're developing new optics technologies to learn about tissue structure and composition, and we are applying these technologies for early cancer screening," he says.
The team's research is part of a field that's called bio-photonics, where light becomes an analytical tool for biology. Backman and his colleagues perfected a new type of microscopy, which they most recently demonstrated using cheek cells harvested with a small brush stroked against the inside of the mouth. When the researchers shine light on the harvested cells, photons bounce off structures within them at different angles depending on whether the cells are healthy or not.
The process is highly sensitive, able to detect even subtle abnormalities that could indicate problems elsewhere in the body. Backman is currently developing screeners for a number of cancers by harvesting cells from areas near organs that could become malignant. For example, cheek cells are harvested as a pre-screener for lung cancer, and cells harvested from just inside the rectum can be analyzed to prescreen for potential colon cancer.
Backman says both technologies are minimally invasive and can be practiced in a primary care setting. He adds that the colon screening he's testing doesn't involve the discomfort of bowel prep that, as Backman says, "Everyone loves to hate."
A slightly more invasive pre-screener takes cells from the upper intestine to screen for pancreatic cancer. The current test for pancreatic cancer involves taking a probe into ducts around the pancreas and poses a high risk of injury.
Once the harvested cells are analyzed, Backman says he can detect details previously unseen with conventional microscope technologies. "We see alterations in cells that are indicative of pre-pre cancer, if you will. If you were to take the cells under the microscope, you could not tell a difference."
Please read more from:
http://nextbigfuture.com/2012/01/breakthrough-in-early-cancer-detection.html