Oct 16, 2009

$martGrid and $torage Opportunities

EESAT And Energy Storage Opportunities On The Smart Grid

"opportunities in grid-based energy storage are huge, but that successful investing will require study, patience, diligence and a firm grasp of economics."

EESAT 2009, a biennial international technical conference sponsored by the DOE, Sandia National Laboratories and the Electricity Storage Association that focuses on storage technologies for utility applications. The conference included dozens of high-level technical presentations from storage technology developers...

On the cautionary side I returned often to the unpleasant reality that most grid-connected storage applications won't pay under current economic conditions because the spread between the cost of storage and the value of storage remains narrow. That cost-benefit equation is changing rapidly as energy costs rise and renewables are added, but as long as waste is cheaper than storage, waste will prevail. The following graph comes from a November 2004 presentation by John Broyes of Sandia National Laboratories that provided an overview of the DOE's Energy Storage Systems Program. The chart focused on the California utility market and showed the clear inverse relationship between the installed cost of energy storage systems and total demand for those systems. It merits more than a passing glance from investors who want to know where the business is (see p. 11 of the presentation for an expanded version).

2004 Sandia.png
While the graph contains a wealth of information on the wide variety of potential uses for storage in the utility market, the most important lesson for energy storage investors is price sensitivity. When total installed costs for energy storage systems are $1,000 per kW or higher, demand for storage is almost insignificant. As installed costs fall into the $600 per kW range, the number of cost-effective utility applications soars.
Overall, the most important takeaways from EESAT were that from a utility perspective:
  • Storage is the economic equivalent of a dispatchable generating asset;
  • Installed cost and reliability will be the primary drivers of decisions to implement storage solutions;
  • Maintenance and cycle life will be secondary decision drivers;
  • An optimal smart grid configuration will need storage equal to at least 5% of peak system load; and
  • As renewables become prevalent, storage will become increasingly critical to grid stability.
In Energy Storage on the Smart Grid Will Be 99.45% Cheap and 0.55% Cool, I explained that the required annual storage build in the State of California was estimated at 500 MW per year for the next decade. Of this total, 50 MW would need to be fast storage in the form of flywheels and Li-ion batteries and the 450 MW balance would be 4 to 6 hour storage in the form of pumped hydro, compressed air, flow batteries and advanced lead acid batteries. When the California numbers are scaled up to a national level, they translate to billions in new annual demand for as far as the eye can see. When you add in billions in new demand for transportation, it's clear that the sector isn't even close to ready for the near-term demands. To compound the problem, essential raw material supply chains aren't ready either.

...energy storage devices are rapidly evolving from minor components in high-value durable goods to stand-alone end user products. As a result, the cost of energy storage is rocketing from less than 5% of product cost in the case of portable electronics to more than 50% of product cost in the case of an EV like the Tesla roadster. When you get into the utility arena, the storage devices are the products and represent 100% of the product costs. Since consumers generally have higher payback expectations and shorter investment horizons than utilities, I believe consumer price sensitivity will be very high notwithstanding the current flood of optimistic stories, speeches and reports from the mainstream media, politicians and environmental activists.

Please read on at altenergystocks