Dec 21, 2011

We just figured out how battery's work... Now we can build better ones

sciencedaily - A report of the research appeared in a recent issue ofPhysical Review Letters.
'The unique ability of lead acid batteries to deliver surge currents in excess of 100 amps to turn over a starter motor in an automobile depends critically on the fact that the lead dioxide which stores the chemical energy in the battery anode has a very high electrical conductivity, thus allowing large current to be drawn on demand,' said Professor Russ Egdell of Oxford University's Department of Chemistry, an author of the paper.
'However the origin of conductivity in lead oxide has remained a matter of controversy. Other oxides with the same structure, such as titanium dioxide, are electrical insulators.'
Through a combination of computational chemistry and neutron diffraction, the team has demonstrated that lead dioxide is intrinsically an insulator with a small electronic band gap, but invariably becomes electron rich due to the loss of oxygen from the lattice, causing the material to be transformed from an insulator into a metallic conductor.
The researchers believe these insights could open up new avenues for the selection of improved materials for modern battery technologies.
Read more from: http://www.sciencedaily.com/releases/2011/12/111220193312.htm