by nicola jones: With the global push to reduce greenhouse gas emissions, it's ironic that several energy- or resource-saving technologies aren't being used to the fullest simply because we don't have enough raw materials to make them.
For example, says Alex King, director of the new Critical Materials Institute, every wind farm has a few turbines standing idle because their fragile gearboxes have broken down. They can be fixed, of course, but that takes time – and meanwhile wind power isn't being gathered. Now you can make a more reliable wind turbine that doesn't need a gearbox at all, King points out, but you need a truckload of so-called "rare earth" metals to do
Haruyoshi Yamaguchi/Bloomberg
The move toward new and better technologies — from smart phones to electric cars — means an ever-increasing demand for exotic metals that are scarce thanks to both geology and politics. Thin, cheap solar panels need tellurium, which makes up a scant 0.0000001 percent of the earth's crust, making it three times rarer than gold. High-performance batteries need lithium, which is only easily extracted from briny pools in the Andes.
In 2011, the average price of 'rare earth' metals shot up by as much as 750 percent.Platinum, needed as a catalyst in fuel cells that turn hydrogen into energy, comes almost exclusively from South Africa.
Researchers and industry workers alike woke with a shock to the problems caused by these dodgy supply chains in 2011, when the average price of "rare earths" — including terbium and europium, used in fluorescent bulbs; and neodymium, used in the powerful magnets that help to drive wind turbines and electric engines — shot up by as much as 750 percent in a year. The problem was that China, which controlled 97 percent of global rare earth production, had clamped down on trade. A solution was brokered and the price shock faded, but the threat of future supply problems for rare earths and other so-called "critical elements" still looms.
Please continue reading from A Scarcity of Rare Metals Is Hindering Green Technologies by Nicola Jones: Yale Environment 360 | shared via feedly mobile