Feb 3, 2015

Graphene Aerogel batteries are ten times smaller with the same power

Korean researchers have successfully developed sponge-like graphene aerogel electrode material using graphene and a polymer. This is a graphene battery. The newly-developed battery is ten times as small as existing ones, but can show the same product performance.

A research team headed by Park Ho-seok, professor of the School of Chemical Engineering at Sungkyunkwan University, announced on Feb. 1 that it has succeeded in developing a very porous graphene aerogel electrode material by combining polyvinyl alcohol and graphene.

Studies on developing high-capacity and rapidly-chargeable batteries are underway worldwide. It is necessary to compress devices in order to supply energy in extreme conditions. However, when existing graphene-based batteries are compressed by 30 percent, product performance suffers owing to the destruction of the inside structure.

After inducing a chemical reaction between polyvinyl alcohol and graphene in a state of solution, the research team was able to develop a graphene aerogel electrode material that is easily compressed and highly durable, thanks to a great number of pores inside. Aerogel, which is called the lightest solid, is a porous ultralight material. An estimated 90 to 99.9 percent of the material is composed of air, and pores smaller than 100 nanometers form a 3D web.

Advanced Functional Materials - Reversibly Compressible, Highly Elastic, and Durable Graphene Aerogels for Energy Storage Devices under Limiting Conditions

Read more »