Just like peak OIL, China has a plan for depleting uranium and mounting nuclear waste problems.
A private company founded by Kazuo Furukawa, designer of the Fuju reactor, called International Thorium Energy and Molen-Salt Technology Inc (iThEMS) aims to produce a small (10 MW) reactor within five years. Furukawa is aiming for a retail price of 11 US cents per kWh (6.8p per kWh). The Capital of IThEMS is expected to increase to 50 million Japanese yen soon (US$600,000, but they need $300 million to push ahead)
The UK Guardian describes the move by China to develop thorium nuclear reactors
Thorium Energy Conference- The Chinese announcement refers to a 20 year program, but rapid progress can be expected in the next 5 years towards a demonstration plant. China's program is well funded but Japan's is not well funded. Japan and other countries could be motivated to step up funding with true competition from China.
MiniFUJI
Development of the micro-mini thorium molten-salt power plant 'miniFUJI'.
Since smaller thorium molten-salt power plant is easier to construct, we will develop the 10,000kW micro-mini thorium molten-salt power plant 'miniFUJI' within five years. This micro-mini power plant is planned as a local power plant to meet the high need of power supply for servers in information industry and for the stations of charging electric vehicles.
Scaling thorium up to global scale
A Road Map for the Realization of Global-scale Thorium Breeding Fuel Cycle This describes a 5-7 year doubling time for the Uranium 233 that is needed to start the molten salt thorium reactors.
The Thorium Molten-Salt Nuclear Energy Synergetic System [THORIMS-NES], described here is a symbiotic system, based on the Thorium-Uranium-233 cycle. ...FUJI reactor and the AMSB can also be used for the transmutation of long-lived radioactive elements in the wastes, and has a high potential for producing hydrogen-fuel in molten salt reactors. The development and launching of THORIMS-NES requires the following three programs during the next three decades: (A) pilot plant: miniFUJI (7-10 MWe): (B) small power reactor: FUJI-Pu (100-300MWe). (C) fissile producer: AMSB for globally deploying THORIMS-NES
How much uranium-233 do we need? Well, most of the studies done by Oak Ridge in the 1960s indicated that we could start a one-gigawatt thorium reactor with about 1 tonne of uranium-233. How much do we have right now? About one tonne. So we could only start one reactor, right? With uranium-233, yes, but we need to go about quickly "converting" our fissile materials into uranium-233 so we can start more.
We don't have to limit ourselves to just uranium-233 to start these thorium reactors. We can use the highly-enriched uranium that we're recovering from all of the nuclear weapons that we are decommissioning to help us. We can use the plutonium we're recovering from those weapons. We can use the plutonium that's been generated in our reactors over the last sixty years to help us. By using slowed-down neutrons and thorium, the startup power of this fuel is magnified by about 1000 to 1500% over a fast reactor...a fast reactor that is a cousin to the liquid-fluoride thorium reactor, except it will be one that will use liquid-chloride salts that are chemically stable as a fuel and coolant, not the liquid-sodium-metal that is currently proposed. Again, just like other fast reactors it will take 5-10 tonnes of these transuranics to produce a gigawatt of power. So what have we bought by this approach? Just this—in these liquid-chloride reactors we will jacket the reactor with a thorium blanket and make new uranium-233 even as we are destroying plutonium. That means that for each year we burn plutonium, we'll make enough uranium-233 to start a new LFTR. Compared to the fast reactor approach where you're trying to breed plutonium to build more fast breeders, and it takes 20-30 years to produce enough new fuel in a fast reactor to start another one, we won't be using these chloride fast reactors to start other fast reactors. We'll be using them to make the fuel to start fluoride thorium reactors that use slowed-down neutrons.
With this approach, plutonium from weapons and reactor fuel will start about 70 chloride fast reactors. Each one will make enough uranium-233 each year to start 70 new LFTRs at a gigawatt each. That means that in less than 20 years we could have 1000 LFTRs online, generating all of the energy our nation needs, all the while we're burning down and destroying the plutonium we've generated over the last 60 years for weapons and from reactor operation. Compare that to the standard fast breeder approach where in 20 years the 70 fast breeders we started have generated enough new fuel for another 70 fast breeders and you can see really quickly how fast uranium-233 and slowed-down neutrons can let you move ahead and replace coal and other fossil fuels.
So a country like say China that has Plutonium and highly enriched Uranium and was less concerned about using it, can start up a lot of Thorium reactors... if China was primarily concerned with making an energy transition off of coal which was killing almost one million Chinese per year from air pollution.
Read full from NBF - "China's Thorium Reactor and Japan's targets 10 MW thorium miniFuji for 2016"
Read full from NBF - "China's Thorium Reactor and Japan's targets 10 MW thorium miniFuji for 2016"
Haase - Someone may want to ask Clinton and Congress what happened to the future of Fast Reactors in the U.S. Spoiler "We would already have them online, with no coal crisis and no waste to put in Yucca."
- Thorium theory - giving dumb nuclear a brain and a chance...
- Bill Gates and Google looking to Invest in Thorium Energy
- Fast Breeders are Key to Fertile Nuclear Future
- Uranium Is So Last Century... Enter Thorium
- Dismantle military stockpiles and power future beyond 30 years
- 1/2 cost of current reactors & uses almost all nuclear fuel.
- US Energy Independence by a thorium nut
- Unless new breed of reactors are used 'peak uranium' will implode nuclear renaissance