Dec 18, 2011

The new face of safe nuclear | SmartPlanet

“After Fukushima, everybody is asking whether nuclear power can be safe,” Sorensen (pictured, below) said in an interview. His resounding answer is “yes.”

But it will take nothing less than for the industry to shift from its conventional reactor designs and from the uranium 235 fuel process on which it began to settle in the 1960s, according to Sorensen.

Instead, he says, it has to adopt a liquid thorium technology similar to what nuclear developers built in the 1960s at Oak Ridge National Laboratory in Tennessee, but that lost out (pictured above).

“In the 40s and 50s they had an expansive definition of what nuclear power was – it wasn’t just solid fuel uranium reactors,” said Sorensen, who is Flibe’s president. “But that’s what it has come to mean now.”

Thorium lost in part because it did not create lethal waste - plutonium - that could be used to make bombs the way uranium did. In the heat of the Cold War, the U.S. government and military demanded such deadly material. (Oak Ridge originated in the 1940s to support the Manhattan Project, which developed the world’s first atomic bomb).

Today, other countries including China and India are pursuing thorium nuclear projects. Sorensen believes that thorium should be the pillar of an American nuclear future, because thorium “is so fundamentally different than every other nuclear story out there right now.”

Because his thorium reactor would not produce plutonium, it would mitigate the chance of nuclear weapons proliferation and eliminate the need for utilities to bury plutonium waste.

Although thorium in some designs does produce plutonium waste, that waste is less hazardous than other mixes of plutonium waste, there’s less of it, and it decomposes much faster than conventional waste – hundreds of years rather than thousands or more, according to various thorium proponents.

And thorium-based fuel fissions much more efficiently than does uranium 235, meaning a thorium reactor requires less fuel.